HONORS & AWARDS

CHATTANOOGA RESEARCH AWARD

2016
JAMES T. CAVANAUGH
TERRY D. ELLIS
GAMMON M. EARHART
MATTHEW P. FORD *
K. BO FOREMAN
LELAND E. DIBBLE

2015
DON STRAUBE
CAREY L. HOLLERAN
ABIGAIL L. LEDDY
PATRICK W. HENNESSY
T. GEORGE HORNBY

2014
RYAN P. DUNCAN
JAMES T. CAVANAUGH
TERRY D. ELLIS
KENNETH “BO” FOREMAN
ABIGAIL LEDDY
LEE DIBBLE
MATTHEW FORD
GAMMON EARHART

2013
DIANE U. JETTE

2012
EDELLE (EDEE) CARMEN FIELD-FOTE
KATHRYN E. ROACH

2011
KRISTIN J. CARPENTER *
JOHN D. CHILDS *
JOSHUA A. CLELAND *
JULIE M. FRITZ *
PAUL GLYNN *
PAUL E. MINTKEN *
JULIE M. WHITMAN *

2010
ANNE SHUMWAY-COOK

2009
SHAILESH S. KANTAK
KATHERINE J. SULLIVAN

2008
ALAN M. JETTE

2007
MARY K. HASTINGS *
DONOVAN J. LOTT *
MICHAEL J. MUELLER *

2006
REBECCA L. CRAIK *
KATHLEEN K. MANGIONE *
KERSTIN M. PALOMBARO *
SUSAN S. TOMLINSON *

2005
DENNIS L. HART †
MARK W. WERNEKE *

2004
JOSEPH E. BERMAN *
GUY G. SIMONEAU

2003
LOUISE MOLLINGER-RIEMANN *
TERESA M. STEFFEN *

2002
STUART A. BINDER-MACLEOD *
SAMUEL C K LEE *
LYNN SNYDER-MACKLER *
SCOTT K. STACKHOUSE *
JENNIFER E. STEVENS *

2001
KATHLEEN M. GILL-BODY *

2000
MICHAEL J. MUELLER *

1999
DANIEL L. RIDDLE *

* A biography and photo are not available
† Recipient is deceased
1998
MARGARET BALDWIN *
ANNE SHUMWAY-COOK

1997
JENNIFER S. BRACH *
JESSIE M. VANSWEARINGEN *

1996
SUZANN K. CAMPBELL *
GAY GIROLAMI *
THUBI KOLOBE *

1995
KAREN W. HAYES *
LOUISE A. MOLLINGER *

1993
ROBERT J. PALISANO *

1992
BELLA J. MAY *

1991
CLAIRE PEEL *

1990
MICHAEL SMUTOK *

1989
LUTHER KLOTH *

1988
MARY KATE MCDONNELL *

1987
CARL G. KUKULKA *

1986
DALE R. FISH *

1985
MAUREEN K. HOLDEN *

1984
DEAN P. CURRIER *

1983
CARMELLA GONNELLA †*

1982
CAROL I. LEIPER *

1981
JAMES E. GRIFFIN †*

* A biography and photo are not available
† Recipient is deceased

JAMES T. CAVANAUGH, PT, PHD
I am very fortunate to be part of a highly productive and supportive team of collaborators, all of whom are co-recipients of this award. I am also fortunate to be a part of a vibrant scholarly community at the University of New England, where faculty are routinely encouraged and supported in their scholarly endeavors. As for my scholarly development, my success has in large part been due to my many mentors along the way, including Miriam Morey and Carl Pieper at Duke University Medical Center, Kevin Guskiewicz, Carol Giuliani and Vicky Mercer at UNC Chapel Hill, Nicholas Stergiou at the University of Nebraska – Omaha, and Kim Coleman, formerly of Orthocare Innovations. Last but most certainly not least, I owe a great deal to my loving wife, Deb, my children, Ben and Katie, and my parents, for whom education was always among the highest of priorities.

TERRY D. ELLIS, PT, PHD, NCS
I would like to thank Jim, Gammon, Matt, Bo and Lee for a very productive, exciting and enjoyable collaboration!

GAMMON M. EARHART, PT, PHD
I am grateful to many people who supported me, guided me to research and helped me thrive as a scientist. Special thanks to my parents, Chett and Ruth Earhart, my husband, Paul Markowitz, and our son Maelon. Thanks to my many mentors including Archie Vomachka, Becky Craik, Shirley Sahrmann, Paul Stein, Amy Bastian, Fay Horak, Geoffrey Melvill Jones, Susie Deusinger, and Joel Perlmutter. And, most certainly, thanks to my co-authors on this paper for their collaboration and friendship.
K. BO FOREMAN, PT, PHD
I would like to acknowledge my colleagues for their continued support and collaboration. It has been an incredible opportunity to work alongside such wonderful individuals from both inside and outside my University. In addition, I would like to thank my mentor, Dr. Kurt Albertine for teaching me the importance of quality research and scientific writing. Lastly, I would like to thank all the research participants because without their support this research would not be possible.

LELAND E. DIBBLE, PT, PHD
I am honored to receive the Chattanooga Research Award and would like to thank the APTA for selecting our manuscript. First and foremost, I need to thank the participants with Parkinson disease that generously volunteered their time over the course of 2 years to allow this project to succeed. Thanks are due to the University of Utah Department of Physical Therapy, the Davis Phinney Foundation, the Parkinson Disease Foundation, and the Utah Chapter of the American Parkinson Disease Association for their confidence and support of our vision. Personally and professionally, I am grateful to Pam Duncan, Carolee Moncur, Dick Burgess, Scott Ward, Robin Marcus, and Paul LaStayo, who have nurtured my development as a physical therapist and a researcher. Most importantly, none of my work would be possible without the love and support of my wife, Anna, and our children, Alicia, Shelby, and Gavin.
CHATTANOOGA RESEARCH AWARD

DON STRAUBE, PT, PHD, NCS

Don D. Straube, PT, PhD, NCS, Carey L. Holleran, PT, MPT, NCS, Abigail L. Leddy, PT, DPT, MSCI, Patrick W. Hennessy, PT, MPT, NCS and T. George Hornby, PT, PhD, are the physical therapist authors of the award-winning article in the July 2014 issue of Physical Therapy titled “Effects of Dynamic Stepping Training on Nonlocomotor Tasks in Individuals Poststroke.”

The purposes of this study were to investigate the potential gains in specific nonlocomotor assessments in individuals poststroke following only stepping training of variable, challenging tasks at high aerobic intensities. Individuals with locomotor deficits following subacute and chronic stroke completed a locomotor training paradigm using a repeated-measures design. Practice of multiple stepping tasks was provided in variable environments or contexts at high aerobic intensities. The primary outcome was timed Five-Times Sit-to-Stand Test performance, with secondary measures of sit-to-stand kinematics and kinetics, clinical assessment of balance, and isometric lower-limb strength. The present data suggest that significant gains in functional, nonlocomotor tasks can be achieved with high-intensity, variable stepping training. Improvements in nonpracticed tasks may minimize the need to practice multiple tasks within and across treatment sessions.

ACKNOWLEDGEMENT

I am honored to receive the Chattanooga Research Award and thank APTA for this recognition. I would like to acknowledge the participants involved in this research. Their dedication to improving their lives, and the lives of individuals living with stroke, is admirable. I would also like to thank my dedicated and talented coauthors. In particular, I would like to thank T. George Hornby PT, PhD, whose tenacity and willingness to take risks was instrumental in bringing this work to fruition. I have been fortunate to have had several talented mentors throughout my career, and would like to acknowledge Elizabeth Mostrom, PT, PhD, Mary Keehn, PT, DPT, MHPE, Jules Rothstein, PT, PhD, Ziaul Hasan, PhD, Suzann Campbell, PT, PhD, and Everett Smith, PhD. Finally, I would like to thank my family, colleagues, students, and patients who continue to teach me something every day.
The purposes of this study were to investigate the potential gains in specific nonlocomotor assessments in individuals poststroke following only stepping training of variable, challenging tasks at high aerobic intensities. Individuals with locomotor deficits following subacute and chronic stroke completed a locomotor training paradigm using a repeated-measures design. Practice of multiple stepping tasks was provided in variable environments or contexts at high aerobic intensities. The primary outcome was timed Five-Times Sit-to-Stand Test performance, with secondary measures of sit-to-stand kinematics and kinetics, clinical assessment of balance, and isometric lower-limb strength. The present data suggest that significant gains in functional, nonlocomotor tasks can be achieved with high-intensity, variable stepping training. Improvements in nonpracticed tasks may minimize the need to practice multiple tasks within and across treatment sessions.

ACKNOWLEDGEMENT

I would like to gratefully and sincerely thank Dr T. George Hornby for his guidance, support, and encouragement. His mentorship has been paramount in helping me to further develop and diversify my professional skills. I am also thankful for all my colleagues within the Locomotor Recovery Laboratory and the Allied Health Staff at the Rehabilitation Institute of Chicago, where teamwork is supreme and laughter is plentiful. And lastly, I am thankful to my loving family who has maintained unwavering support of my vision to contribute to the wonderful and fulfilling profession of physical therapy.
The purposes of this study were to investigate the potential gains in specific nonlocomotor assessments in individuals poststroke following only stepping training of variable, challenging tasks at high aerobic intensities. Individuals with locomotor deficits following subacute and chronic stroke completed a locomotor training paradigm using a repeated-measures design. Practice of multiple stepping tasks was provided in variable environments or contexts at high aerobic intensities. The primary outcome was timed Five-Times Sit-to-Stand Test performance, with secondary measures of sit-to-stand kinematics and kinetics, clinical assessment of balance, and isometric lower-limb strength. The present data suggest that significant gains in functional, nonlocomotor tasks can be achieved with high-intensity, variable stepping training. Improvements in nonpracticed tasks may minimize the need to practice multiple tasks within and across treatment sessions.

ACKNOWLEDGEMENT

I have been greatly blessed by extremely supportive friends and family who are constantly encouraging me and journeying through life with me. I have also had the distinct pleasure of being able to work with wonderful people who both challenge and build up those around them. From Dr Lynda Uphouse, who first realized my love for research, to Dr Gammon Earhart, remarkable mentor and friend, to all of those in Dr George Hornby’s Locomotor Recovery Laboratory at RIC, I have been among great minds that have focused on finding answers to questions with the intention of helping people. I cannot forget to thank all of the people who have allowed me to treat them and who have participated in the research projects, as I am daily learning from them. The hope is for many to benefit from the work done and for the work to continue.
The purposes of this study were to investigate the potential gains in specific nonlocomotor assessments in individuals poststroke following only stepping training of variable, challenging tasks at high aerobic intensities. Individuals with locomotor deficits following subacute and chronic stroke completed a locomotor training paradigm using a repeated-measures design. Practice of multiple stepping tasks was provided in variable environments or contexts at high aerobic intensities. The primary outcome was timed Five-Times Sit-to-Stand Test performance, with secondary measures of sit-to-stand kinematics and kinetics, clinical assessment of balance, and isometric lower-limb strength. The present data suggest that significant gains in functional, nonlocomotor tasks can be achieved with high-intensity, variable stepping training. Improvements in nonpracticed tasks may minimize the need to practice multiple tasks within and across treatment sessions.

ACKNOWLEDGEMENT
Thank you to the American Physical Therapy Association for selecting our paper for the 2015 Chattanooga Research Award. I am deeply honored and feel humbled to be included with such an inspiring and creative group in the locomotor recovery lab. Thank you to my friends and family, and to the amazing clinicians and patients at MossRehab and Rehabilitation Institute of Chicago for your support. Above all, I would like to thank Dr George Hornby for his patience, mentorship, and tireless efforts to translate research findings into improved clinical care.
The purposes of this study were to investigate the potential gains in specific nonlocomotor assessments in individuals poststroke following only stepping training of variable, challenging tasks at high aerobic intensities. Individuals with locomotor deficits following subacute and chronic stroke completed a locomotor training paradigm using a repeated-measures design. Practice of multiple stepping tasks was provided in variable environments or contexts at high aerobic intensities. The primary outcome was timed Five-Times Sit-to-Stand Test performance, with secondary measures of sit-to-stand kinematics and kinetics, clinical assessment of balance, and isometric lower-limb strength. The present data suggest that significant gains in functional, nonlocomotor tasks can be achieved with high-intensity, variable stepping training. Improvements in nonpracticed tasks may minimize the need to practice multiple tasks within and across treatment sessions.

ACKNOWLEDGEMENT

I am very honored to receive the Chattanooga Research Award and would first like to thank APTA for selecting our manuscript. I would also like to thank the University of Illinois at Chicago, the Rehabilitation Institute of Chicago, and the funding agencies who continue to support the work we do. I am blessed to have been mentored by some extraordinary scientists and people, including Douglas Stuart, Zev Rymer, Brian Schmit, CJ Heckman, Daniel Corcos, and Cole Galloway. I would also like to thank my collaborators and students, with specific acknowledgement of the coauthors on this project and the physical therapists who I have been fortunate enough to work with. Finally, I would be remiss if I did not acknowledge my wife, Jennifer, and my children, Isabella and Lucas, who are an endless source of love, support, and encouragement.
RYAN P. DUNCAN, PT, DPT

Ryan P. Duncan, PT, DPT, Abigail L. Leddy, PT, DPT, MSCI, James T. Cavanaugh, PT, PhD, Leland E. Dibble, PT, PhD, ATC, Terry D. Ellis, PT, PhD, NCS, Matthew P. Ford, PT, PhD, K. Bo Foreman, PT, PhD, Gammon M. Earhart, PT, PhD, are the physical therapist authors of the award-winning article in the April 2013 issue of Physical Therapy titled “Comparative Utility of the BESTest, Mini-BESTest, and Brief-BESTest for Predicting Falls in Individuals with Parkinson Disease.”

The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

I want to thank Dr. Gammon Earhart for her stellar mentorship and guidance over the past 5 years. I’d also like to thank all of the co-authors for their hard work and dedication not only to this manuscript, but also to the larger longitudinal study. Thank you to my wife, Mallory, and all of my family for their continued support in everything I do. Finally, thank you to APTA for their selection of this manuscript to receive the Chattanooga Research Award.
Ryan P. Duncan, PT, DPT, Abigail L. Leddy, PT, DPT, MSCI, James T. Cavanaugh, PT, PhD, Leland E. Dibble, PT, PhD, ATC, Terry D. Ellis, PT, PhD, NCS, Matthew P. Ford, PT, PhD, K. Bo Foreman, PT, PhD, Gammon M. Earhart, PT, PhD, are the physical therapist authors of the award-winning article in the April 2013 issue of Physical Therapy titled “Comparative Utility of the BESTest, Mini-BESTest, and Brief-BESTest for Predicting Falls in Individuals with Parkinson Disease.”

The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-Bestest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

I would like to thank all who have supported me, challenged me, and contributed to who I am in my career including those at Washington University in St. Louis, the Rehabilitation Institute of Chicago, Texas Woman’s University, and my loving friends and family.
The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-Bestest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

I am honored that our paper was selected for the Chattanooga Research Award and would like to thank APTA for selecting our paper. This project and this paper would not have been possible without the expertise and motivation of the research team/co-authors, Ryan Duncan, Jim Cavanaugh, Gammon Earhart, Terry Ellis, Bo Foreman, Matt Ford, and Abby Leddy. It continues to be a privilege to work with this group.
The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-BESTest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

I would like to acknowledge the support and efforts of my co-authors who have been an absolute pleasure to collaborate with over the last several years. I would like to thank Alan Jette, Becky Silliman and the faculty of the Physical Therapy program at Boston University for their support and encouragement allowing me to grow as a researcher. In addition, I am grateful for support from the Davis Phinney Foundation, Parkinson Disease Foundation and American Parkinson Disease Association which has been essential in moving this work forward. Finally, I would like to thank Diane Dalton for her support and encouragement throughout my career.
The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-Bestest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

My sincere gratitude to my fellow authors and collaborators who made this award possible. I admire their devotion to improving the lives of persons with Parkinson's disease (PD). Thank you to the participants and their families, who traveled at their own expense; this work would not be possible without their commitment to helping people with PD. Parkinson's support groups at Lakeshore Foundation and the Parkinson's Association of Alabama have been integral in supporting research aimed at improving quality of life. My thanks goes out to the Parkinson's Disease Foundation and the Davis Phinney Foundation. Without their funding support, this research would have never happened. Finally, my thanks and love goes out to my family, my wife, Kim, and my two sons, Dylan and Jack. I am grateful for their love and support every day.
The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-Bestest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT
I would like to acknowledge my colleagues for their continued support and collaboration. It has been an incredible opportunity to work alongside such wonderful individuals from both inside and outside my University. In addition, I would like to thank my mentor, Dr. Kurt Albertine for teaching me the importance of quality research and scientific writing. Lastly, I would like to thank all the research participants because without their support this research would not be possible.
The purposes of the study were to describe the balance performance of those with Parkinson Disease (PD) using the BESTest, Mini-BESTest and Brief-BESTest, determine the relationships among the scores derived from the 3 versions, and compare the accuracy of the respective tests in identifying recurrent fallers among people with PD. At baseline, participants had varying levels of balance impairment, and Brief-BESTest scores were significantly correlated with Mini-Bestest and BESTest scores. Six-month retrospective fall prediction accuracy was moderately high; prospective fall prediction accuracy over 6 months was similarly accurate but less sensitive over 12 months. The study concluded that all versions of the BESTest were reasonably accurate in identifying future recurrent fallers, especially during the 6 months following assessment. Clinicians can reasonably rely on the Brief-BESTest for predicting falls, particularly when time and equipment constraints are of concern.

ACKNOWLEDGEMENT

I am blessed to have the enduring support of my parents, Chett and Ruth Earhart, who have always encouraged me to do my best. I am grateful to my son, Maelon, and my husband, Paul, for their love and their appreciation of science. My career path has been guided by many amazing mentors including Archie Vomachka, Becky Craik, Shirley Sahrmann, Paul Stein, Amy Bastian, Fay Horak, Geoffrey Melvill Jones, Joel Perlmutter and Susie Deusinger. Special thanks to my collaborators and co-authors on this project. It is a pleasure and a privilege to work with such talented and dedicated colleagues.
Diane U. Jette, PT, DSc, FAPTA, is one of the authors of the award-winning article in the April 2012 issue of Physical Therapy, titled “Use of quality indicators in physical therapist practice: an observational study.” Diane Jette is a professor and chair of the Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, at the University of Vermont in Burlington.

Provisions in health care reform legislation related to quality care apply to physical therapists, yet evidence regarding quality of physical therapy services is limited. Therefore, this observational study was conducted to determine the use of quality indicators in physical therapist practice.

Members of the Orthopaedic Section and Private Practice Section were surveyed electronically. The survey included 22 brief patient descriptions, each followed by questions regarding the use of examinations and interventions based on the 2009 list of Medicare-approved quality measures. Separate multivariate logistic regression models were used to determine the odds of performing each examination and intervention on more than 90% of patients, given perceptions of its importance to care, the burden of performing it, and the level of evidence supporting its use. Participants reported a relatively low frequency of performing examinations and interventions that supported primary and secondary prevention and use of standardized measures. Perceptions of higher importance and lower burden were associated with greater odds of performing an examination or intervention. Importance and burden were more influential factors than the perceived availability of evidence to support use of identified techniques. The findings suggest that physical therapists may not see themselves as providers of primary or secondary prevention services. Patient management strategies associated with these types of services also may be perceived as relatively unimportant or burdensome.

ACKNOWLEDGEMENT
I would like to acknowledge and thank my family and colleagues for all of their support over the past 40 years:
My mom and dad, who valued education and provided encouragement.
My husband, Al (the other Al Jette), who never questioned and always believed I could do anything.
My three now-grown, successful children who put up with Mom’s crazy schedules.
My work colleagues, starting at the University of Illinois Hospital, Simmons College. Beth Israel Deaconess Medical Center and UVM.
And my many professional colleagues whom I am lucky to call my friends.
Each in their own way helped me to become a better educator, researcher, and leader, and I have tried to leave a small piece of the best part of myself with each of you.
I could not have chosen a better profession. I have loved every day of it, and it is part of who I am.
Edelle C. Field-Fote, PT, PhD, and Kathryn E. Roach, PT, PhD, are the authors of “Influence of a Locomotor Training Approach on Walking Speed and Distance in People with Chronic Spinal Cord Injury: A Randomized Clinical Trial.”

The article covered a study that compared changes in walking speed and distance associated with 4 locomotor training approaches conducted in a rehabilitation research laboratory. Participants were people with minimal walking function due to chronic spinal cord injury (SCI) who trained 5 days per week for 12 weeks with the following approaches: treadmill-based training with manual assistance (TM); treadmill-based training with stimulation (TS); overground training with stimulation (OG); and treadmill-based training with robotic assistance (LR). In participants who completed the training, there were overall effects for speed and distance. For speed, there were no significant between-group differences; however, distance gains were greatest with OG training with stimulation. Effect sizes for speed were the same for TM and TS; there was no effect for LR. Ten participants who improved with training were retested at least 6 months after training; walking speed at this time was slower than that at the conclusion of training but remained faster than before training.

Edelle C. Field-Fote, PT, PhD, and Kathryn E. Roach, PT, PhD, are the authors of “Influence of a Locomotor Training Approach on Walking Speed and Distance in People with Chronic Spinal Cord Injury: A Randomized Clinical Trial.”

The article covered a study that compared changes in walking speed and distance associated with 4 locomotor training approaches conducted in a rehabilitation research laboratory. Participants were people with minimal walking function due to chronic spinal cord injury (SCI) who trained 5 days per week for 12 weeks with the following approaches: treadmill-based training with manual assistance (TM); treadmill-based training with stimulation (TS); overground training with stimulation (OG); and treadmill-based training with robotic assistance (LR). In participants who completed the training, there were overall effects for speed and distance. For speed, there were no significant between-group differences; however, distance gains were greatest with OG training with stimulation. Effect sizes for speed were the same for TM and TS; there was no effect for LR. Ten participants who improved with training were retested at least 6 months after training; walking speed at this time was slower than that at the conclusion of training but remained faster than before training.

ACKNOWLEDGEMENT

I want to thank the vast multitude of individuals who contributed to the writing of this article beginning with my father who taught me the joy of scientific inquiry by doing experiments in the kitchen sink and my mother who instilled me with a love of language by surrounding me with books. I am indebted to all my teachers, from kindergarten to graduate school, for sharing their knowledge with me and for correcting my assignments. I am grateful to all my colleagues and co-workers, past and present, who spent valuable time discussing and editing my papers. I am indebted to an army of reviewers and editors for forcing me to improve my thinking and writing. I owe a debt to my students for challenging me, my patients for grounding and inspiring me and my friends and family for loving and supporting me. Finally, I thank my co-author Dr. Field-Fote.
ANNE SHUMWAY-COOK, PT, PhD, FAPTA

According to the article, falls are a major health problem in the elderly community, and questions regarding incidence, risk factors, and provider response to falls exist. This study examined the incidence of falls, associated factors, health-care costs, and provider response among Medicare beneficiaries. The article concluded that falls are common and may be associated with significant health care costs, and health care providers may be missing many opportunities to provide fall prevention information to older people.

APTA is pleased to recognize Dr Shumway-Cook with the Chattanooga Research Award.

ACKNOWLEDGEMENT

I am very honored to receive the Chattanooga Research Award and would like to thank the American Physical Therapy Association for selecting our paper. I would like to acknowledge and thank my co-authors, Marcia Ciol, Kathy Yorkston, Leighton Chan, Jeanne Hoffman, and Brian Dudgeon, for their help and assistance. I would particularly like to thank the Chattanooga Corporation for their support of both physical therapy research and the American Physical Therapy Association.
Shailesh S Kantak, PT MS, is recognized for the article he authored with Katherine J Sullivan, PT, PhD, FAHA, and Patricia A Burtner, PhD, OTR/L, FAOTA, titled “Motor Learning in Children: Feedback Effects on Skill Acquisition.” Mr Kantak is a PhD candidate in the Division of Biokinesiology and Physical Therapy at the School of Dentistry, University of Southern California.

Mr Kantak, Dr Sullivan, and Dr Burtner studied the effect of different relative frequencies of feedback on skill acquisition in children compared with young adults. Reduced feedback during motor skill practice benefits motor learning; however, it is unknown whether these findings can be applied to motor learning in children, given that children have different information-processing capabilities. All 40 participants – young adults and children – practiced 200 trials of a discrete arm movement with specific spatiotemporal parameters. Participants from each group were randomly assigned to either a 100-percent feedback group or a reduced (62-percent faded) feedback group. Learning was inferred from the performance on the delayed (24-hour) retention and reacquisition tests. All participants improved accuracy and consistency across practice trials, during which the young adults performed with significantly less error than the children. Adults who practiced with reduced feedback performed with increased consistency during the retention test compared with those who practiced with 100-percent feedback. In contrast, children who received reduced feedback during practice performed with less accuracy and consistency during the retention test than those who received 100-percent feedback. When feedback was reintroduced during the reacquisition test, the children in the reduced feedback group were able to improve their performance comparable to those in the 100-percent feedback group. The authors concluded that during motor learning, children use feedback differently than adults. To optimize motor learning, children may require longer periods of practice, with feedback reduced more gradually.

APTA is pleased to honor Mr Kantak with the Chattanooga Research Award.
KATHERINE J SULLIVAN, PT, PhD, FAHA

Katherine J Sullivan, PT, PhD, FAHA, is recognized for the article she authored with Sheilesh S Kantak, PT, MS, PhD(Cand) and Patricia A Burtner, PhD, OTR/L, FAOTA, titled “Motor Learning in Children: Feedback Effects on Skill Acquisition.” Dr Sullivan is Associate Professor of Clinical Physical Therapy and Director, Doctor of Physical Therapy Program, Division of Biokinesiology and Physical Therapy at the School of Dentistry, University of Southern California.

Dr Sullivan, Mr Kantak, and Dr Burtner studied the effect of different relative frequencies of feedback on skill acquisition in children compared with young adults. Reduced feedback during motor skill practice benefits motor learning; however, it is unknown whether these findings can be applied to motor learning in children, given that children have different information-processing capabilities. All 40 participants – young adults and children – practiced 200 trials of a rapid arm movement. Young adults and children were randomly assigned to either a 100-percent feedback group or a reduced (62-percent faded) feedback group. Learning was determined from a retention and reacquisition test done the next day. All participants improved accuracy and consistency across practice trials, during which the young adults performed with significantly less error than the children. Adults who practiced with reduced feedback performed with increased consistency during the retention test compared with those who practiced with 100-percent feedback. In contrast, children who received reduced feedback during practice performed with less accuracy and consistency during the retention test than those who received 100-percent feedback. When feedback was reintroduced during the reacquisition test, the children in the reduced feedback group were able to improve their performance comparable to those in the 100-percent feedback group. The authors concluded that during motor learning, children use feedback differently than adults. To optimize motor learning, children may require longer periods of practice, with feedback reduced more gradually.

APTA is pleased to honor Dr Sullivan with the Chattanooga Research Award.
ALAN M. JETTE, PT, PHD, FAPTA

Alan M. Jette, PT, PhD, FAPTA, is Professor of Health Policy & Management at Boston University’s School of Public Health where he directs the Health & Disability Research Institute. Dr. Jette’s research interests include late-life exercise, evaluation of rehabilitation treatment outcomes, and the measurement, epidemiology, and prevention of disability. Dr. Jette is an international expert in the development and dissemination of contemporary outcome measurement instruments to evaluate health care quality and outcomes. He has published over 175 peer reviewed articles on these topics.

Throughout his 30+ year research career, Dr. Jette has received consistent research funding from numerous NIH Institutes, the NIDRR, CDC, CMS, SSA, as well as from several foundations and private corporations. Currently, he directs the Boston Rehabilitation Outcome Measurement Center funded by NCMRR/NIH, serves on the Executive Committee of the Boston Claude Pepper Older Americans Independence Center funded by NIA/NIH, and is Research Director for the New England Regional Spinal Cord Injury Center, funded by NIDRR. For 10 years he directed the BU Post Doctoral Fellowship Program in Outcomes Research funded by NIDRR and from 1996-2004 he served as Dean of Boston University’s Sargent College of Health & Rehabilitation Sciences.

Dr. Jette has a long history of service to the physical therapy profession including: Editorial Board Member of PTJ (1990-1996), Deputy Editor PTJ (1993-1996), and Acting Editor-in-Chief (2005). He was PTJ’s Special Issue Editor on Disability Research in 1994 and was Co-Editor for the 2011 Special Issue on Disability Research. He chaired the APTA Committee on Practice from 1986-1988, and was a member of the APTA Task Force on Standards for Measurement in Physical Therapy. From 1993-1996 he served a member of the Board of Directors of the Foundation for Physical Therapy. He is currently a member of the Advisory Board of PTJ and a member of the Advisory Council for the Foundation for Physical Therapy.

At a national level, in 1990, Dr. Jette served as Co-Chair of the Panel on Assessment & Epidemiology on the Hunt Valley Task Force on Medical Rehabilitation which was instrumental in founding the National Center for Medical Rehabilitation Research within NIH. From 1998-2002, Dr. Jette was a Member of the Institute of Medicine’s Committee to Review SSA’s Disability Decision Process. From 2004-2008 Dr. Jette served as a member of the National Advisory Board for the NCMRR/NIH. From 2005-2007, Dr. Jette chaired the Institute of Medicine’s study and co-edited the report, The Future of Disability in America which highlights disability priorities for the nation. From 2010 -2011, he served on the National Academy of Sciences’ National Research Council’s Panel that conducted an External Evaluation of NIDRR’s Research Programs. He currently serves on the NIH Blue Ribbon Panel that is evaluating rehabilitation research funding within the NIH.

In the international area, Dr. Jette served as a member of the International Advisory Panel on the evaluation of Swedish research on disability, Swedish Council for Social Research (2000-2001) was an International Review Panel Member, Swedish Council for Working Life and Social Research (2006-2007), and in 2010 was a Member, Research Review Committee, The Academy of Finland Research Council.

He received a BS in Physical Therapy from the State University of New York at Buffalo in 1973 and a MPH (1975) and Ph.D. (1979) in Public Health from the University of Michigan.
Guy G. Simoneau, PT, PhD, has demonstrated professional commitment to the physical therapy profession through his work as an instructor, researcher, and editor-in-chief of the Journal of Orthopaedic & Sports Physical Therapy (JOSPT).

Possessing a strong research record in orthopedics and ergonomics, Dr. Simoneau in 2001 accepted the challenge of leading JOSPT into the new century. Observing the changes in technology that were taking place at the time, Dr. Simoneau saw potential in JOSPT to have a tremendous impact on and be a greater resource to the physical therapy profession than ever before. Under his leadership, the number of articles published each year has increased steadily, as has the circulation of JOSPT. Additionally, Dr. Simoneau has worked to develop an interactive Web site that includes state-of-the-art, easy-to-access features, such as online clinical practice videos.

Dr. Simoneau is a professor in the Department of Physical Therapy at Marquette University where he teaches the orthopedic content of the curriculum. He has been a visiting faculty at Griffith University Gold Coast in Australia and the University of Western Australia, and has consulted for a number of clinics, including the Work Injury Care Center in Glendale, WI, and Columbia Hospital in Milwaukee, WI. Dr. Simoneau received a PhD in exercise and sport science from the Pennsylvania State University Center for Locomotion Studies, an MS in physical education from the University of Illinois at Champaign-Urbana, and a BS in physical therapy from the University of Montreal in Canada.

A member of the Orthopaedic Section’s task force for the development of a new Research Agenda, Dr. Simoneau has also served the association on the Sports Physical Therapy Section Nominating Committee. He was awarded excellence in teaching awards from the Orthopaedic Section in 2000 and Sports Physical Therapy Section in 1998.